
PDS4 Field Format Conventions 
The <field_format> attribute found in table field definitions is equivalent to the PDS3 FORMAT 
keyword in COLUMN definitions. In PDS4 we are using a subset of the POSIX I/O conversion 
specifiers (as used in most modern programming languages with a printf statement or the 
equivalent), rather than the FORTRAN specifiers used in PDS3. 

 
 

NOTE: As of this update, this is still a proposal, not a standard. The details have been discussed by 
the DDWG, and the following text edited accordingly for the next round of discussion. There is one 
outstanding question: 

• If your binary field contains packed data, what should be used for a field format? 

Do check for a final standard before submitting data for review or archiving. 

Why bother? 
The field_format attribute provides two potential benefits to users and the archive: 

1. In character tables, the field_format specification provides width and precision information that 
can be used in validating individual values in the table data. 

2. In binary tables, the field_format specification can be used as an output format for converting 
binary numeric values to a character form without losing or overstating significant digits. 

The POSIX Standard 
The latest edition of the relevant standard is IEEE Std 1003.1-2004. The subset we're selecting is 
compatible with the 2001 version of the same standard, which in turn defers to the ISO C standard 
for printf conventions. Specifically, I'm referencing section 5: "File Notation Conventions". 

Formation Rule 
The formation rule for a field_format value is: 

%[+|-]width[.precision]specifier 

where square brackets indicate an optional component, and: 

width 
is the total potential width of the field (i.e., the width of the widest value occurring in the field) 
precision 
is the number of digits following the decimal point for real numbers (but is otherwise ignored) 
specifier 
is exactly one of the characters in the set [doxfes] 

 
Breaking this rule down into separate parts... 

% 
The format must begin with a percent sign ("%"). 
[+|-] 

http://pubs.opengroup.org/onlinepubs/007904975/


Either a "+" or "-", but never both. The "-" may be used for string fields, to indicate that the string is 
(or should be) left-justified in the field. This is actually the preferred way to present most string values 
in character tables, so the field_format value for fields with a data type of ASCII_String will nearly 
always begin with a "-". Similarly for any of the date/time type fields. In PDS4 labels, the "-" prefix 
is forbidden for all numeric fields (integers, floating point numbers, and numbers using scientific 
notation). 
The "+" may be used with numeric fields to indicate that an explicit sign is included in the field for 
input, and should be displayed on output. In PDS4 labels, the "+" is forbidden for string fields. 
width 
The width is an integer value indicating the maximum number of characters needed for the complete 
representation of the largest (in terms of display bytes, not necessarily magnitude) value occurring, 
or potentially occurring, in the field. This should include bytes for signs, decimal points, and 
exponents. In the case of string values, it should be the maximum width from the first non-blank 
character to the last non-blank character. It should not include bytes for field delimiters, which are 
not considered part of the field. In character tables, it must be the same as the <field_length> for 
scalar fields. 
The width is separated from the precision by a decimal point ("."). If there is no precision specified, 
the decimal point must be omitted. 
precision 
The precision value is used in three different ways: 

1. In real numbers, it indicates the number of digits to the right of the decimal point. 
2. In integers, it indicates that the integer will be zero-padded on the left out to the full field width. 

For example, the value "2" in "%3.3d" format is "002". 
3. In strings, it signifies the maximum number of characters from the actual string value that 

should be printed. (It is possible in programming, for example, to print no more than the first 10 
characters from a string, but require that the output field be left-justified and padded with at 
least 5 blanks by using a specifier of "%15.10s".) In PDS4 archive labels, if a precision value is 
included for a string format, it must be equal to the field width. 

specifier 
The specifier indicates the broad data type for display. It will be one of a subset of the conversion 
specifiers included in the IEEE standard: 
d 
A decimal integer 
o 
An unsigned octal integer 
x 
An unsigned hexidecimal number 
f 
A floating point number in the format [-]ddd.ddd, where the actual number of digits before and after 
the decimal point are determined by the preceding width and precision values (note that 
the width includes the decimal point and any sign). 
e 
A floating point number in the format [-]d.ddde+/-dd where "+/-" stands for exactly one character 
(either "+" or "-"), there is always exactly one digit to the left of the decimal point, and the number of 
digits to the right of the decimal point is determined by the preceding precision value (note that 
the width includes all digits, signs, and the decimal point). 
s 



A string value. Note that strings should generally be left-justified in fixed width character tables and 
on output from a binary table, so most field_format values ending in "s" should begin with "-" 

 
Variations on the Theme 
The proposal is intended to be a limited subset of the total universe of possible format conversion 
specifiers. Here are some things that were discussed by the DDWG but not included in the proposed 
standard, above. If you have an opinion about them, NOW would be an excellent time to tell me. 

"i" conversion specifier 
The "i" specifier is identical to the "d" specifier in every way. I chose "d" over "i" because it was 
mnemonic ("d" for decimal, "o" for octal, "x" for hexadecimal - OK, so it's not a perfect system). The 
DDWG also preferred it in that it makes it clear that we are using a different format specification 
system from the PDS3 standards. 
"X" and "E" specifiers 
These uppercase specifiers only matter on output - they cause the letters in their formats ("a"-"f" for 
hexadecimal, "e" for reals) to be uppercase rather than lowercase. Programmers outputting values 
from PDS4 label info can certainly convert the lowercase forms to uppercase easily and 
unambiguously, so these were omitted to keep the archiving requirements simple and to the point. 
"-" for numbers 
POSIX allows numbers to be left-justified, but this is problematic for documenting numeric fields in 
an archive. If you have a field that looks like a number that you want to left-justify, you should treat it 
as a simple string. 
"g", "G" and "c" specifiers 
The "g|G" specifier switches back and forth between floating point and exponential notation, 
depending on the magnitude of the output value. I'm not a big fan of that for archive tables, but 
perhaps it is useful. The "c" specifier is for I/O on a single character at a time - it cannot take a field 
width or precision, and the output is a single printable character, not the decimal equivalent. I think 
"%1s" is good enough for us, and the subtle distinction between "%c" and "%1s" is not something I 
want to spend the next 10 years explaining. 


